Table 2. Transition pressure (P_{tr} , kb) for the Fm3m \rightleftharpoons Pm3m phase change in the potassium and rubidium halides at 25°C

Salt	Bridgman 1945[25]	Daniels. <i>et al.</i> 1966[31]	Kennedy and LaMori, 1962[18]	Knof and Maisch, 1963[26]	Larson, 1965[29]	Piermarini and Weir. 1962[4]	Pistorius, 1964[11, 12]	Pistorius and Snyman. 1964[13]	This work	Average Value
									None	
KF						35		14.6 ± 1.3	observed	
KC1	19.7		$18 \cdot 28 \pm 0 \cdot 21$		20.0		$19 \cdot 27 \pm 0.08$		19.55 ± 0.13	19.4 ± 0.3
KBr	18.0		17.88 ± 0.06		18.5		17.43 ± 0.07		17.99 ± 0.28	18.0 ± 0.2
KI	17.8		17.48 ± 0.24				17.34 ± 0.05		$18 \cdot 27 \pm 0 \cdot 19$	17.7 ± 0.3
RbF				33		12		6.1	34.47 ± 0.38	33.8 ± 0.8
RbCl	4.90						5.28		5.68 ± 0.14	5.32 ± 0.24
RbBr	4.50						4.20 ± 0.2		4.92 ± 0.06	4.57 ± 0.35
RbI	3.96	3.54					3.59 ± 0.16		3.68 ± 0.05	3.69 ± 0.11

Table 3. Transition volume ($-\Delta V_{tr}$, cm³/mole) for the Fm3m \rightarrow Pm3m phase change in the potassium and rubidium halides at 25°C

Salt	Adams and Davis, 1962[8]	Bridgman, 1945[25]	Genshaft <i>et al.</i> , 1967[30]	Jacobs, 1938[6]	Jamison, 1957[7]	Nagasaki and Minomura, 1964[9]	Pistorius and Snyman, 1964[13]	Weir and Piermarini, 1964[5]	This work	Average value
KF							1.0	2.49	None Obs.	
KCl		4.20				3.85		6.85	$4 \cdot 11 \pm 0 \cdot 10$	4.05 ± 0.17
KBr		4.55						8.35	$4 \cdot 17 \pm 0 \cdot 11$	4.36 ± 0.19
KI		4.50			4.50			11.8	$4\!\cdot\!41\pm0\!\cdot\!15$	$4\!\cdot\!47\pm0\!\cdot\!13$
RbF								3.70	1.83 ± 0.29	
RbC1	6.55	6.00	6.30					5.76	6.95 ± 0.11	6.30 ± 0.35
RbBr		6.55						6.60	7.43 ± 0.18	6.86 ± 0.39
RbI	9.65	7.50		7.9				8.26	$8 \cdot 10 \pm 0 \cdot 10$	8.28 ± 0.31

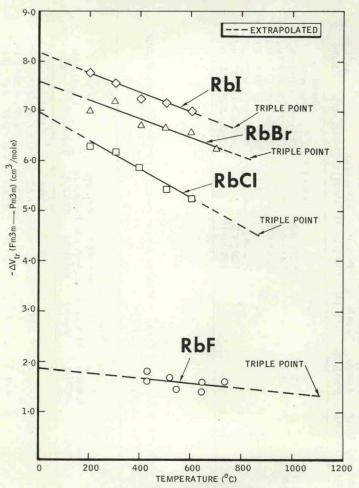


Fig. 4. $\Delta V(\text{Fm3m} \rightarrow \text{Pm3m})$ vs. T for the rubidium halides.

perature data by use of equation (2). The pressure-temperature coordinates of the Fm3m ≈ liquid ≈ Pm3m triple point for these salts were determined from the intersection of the melting curves of the Fm3m and Pm3m phases at the Fm3m ≈ Pm3m phase boundary. The melting curves of the Fm3m and Pm3m phases were drawn through the data points of Clark[22] and of Pistorius [23] in order that the intersection of these two curves would fall on the Fm3m ≈ Pm3m phase boundry obtained in this work. Triple point coordinates obtained for the salts KCl, KBr and KI are shown in Fig. 1; coordinates for the rubidium halides are shown in Fig. 2.

These triple point P-T coordinates are compared with the P-T coordinates given by Clark [22] and by Pistorius [23] in Table 4.

Potassium halides

Potassium fluoride was examined at pressures up to 45 kb at approx. 100° intervals from room temperature up to 800°C. However, we fail to find the phase transition reported by Weir and Piermarini[5] and by Pistorius and Snyman[13]. Pistorius *et al.* found the volume change of this transition to be small, i.e. 0.5 per cent. The sensitivity of the method used here is more than adequate to detect a phase transition with such a small